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Calculation of the flow past a surface-mounted cube
with two-layer turbulence models
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Abstract

In 3-D steady calculations of the flow around a cube placed in developed-channel flow,
various versions of the k—¢ model were tested. For the near-wall treatment, standard wall
functions were employed, as well as the two-layer approach in which the viscous sublayer is
resolved with a one-equation model. Two versions of the one-equation model were tested. In
addition, calculations were carried out with the Kato-Launder (1993) modification of the k—¢
model which eliminates excessive turbulence production in stagnation regions. The various
predictions are compared with the measurements of Martinuzzi and Tropea (1993).

Keywords: Cube; Three-dimensional; Channel-flow; Turbulent; Two-layer model

1. Introduction

The standard k—¢ two-equation model using wall functions to bridge the viscous
sublayer is the most commonly used turbulence model in practice and has been found
to work well in many stmpler flow situations, mainly of the shear-layer type. However,
in more complex situations involving impingement and separation regions which are
always present in the flow around buildings, the use of the isotropic eddy-viscosity
concept and of wall functions has revealed deficiencies. Isotropic eddy-viscosity
models produce excessive turbulent kinetic energy in impingement regions due to an
unrealistic simulation of the normal turbulent stresses which contribute most to the
turbulence production in such regions. An ad hoc modification of the k—¢ model
proposed by Kato and Launder [1] which eliminates the excessive production is
tested in this paper. Wall functions are based on the assumption of a logarithmic
velocity distribution and of local equilibrium of turbulence at the first grid point
placed outside the viscous sublayer. These assumptions are clearly not valid in
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separation regions. Therefore, considerable effort has been devoted in the last 10 years
to the development and testing of low-Reynolds-number versions of the k-¢ model
with which the viscous sublayer can be resolved, and many different variants have
been proposed [3]. Extensive testing has shown (see, e.g., Ref. [4]) that these models
clearly improve the calculations of 2-D separated flows over the use of wall functions,
but they have the disadvantage of requiring a high grid resolution in the viscous
sublayer (25 to 30 grid points) because of the steep gradients of ¢ very near the wall.
This leads to resolution problems in geometrically complex situations involving
a number of walls. Also, basically all variants overpredict turbulence and, conse-
quently, the friction coefficient in adverse pressure gradient boundary layers.

As an alternative, the two-layer approach has recently become popular, in which
only the core flow outside the viscosity-affected near-wall region is simulated by the
k—-& model. The viscous sublayer is resolved by a simpler model, notably a one-
equation model in which the length-scale distribution is prescribed and an ¢-equation
is not solved. Such models therefore require considerably fewer grid points in the
viscous sublayer, of the order of 10-15, and are therefore more suitable for complex
situations involving more than one wall for which the near-wall regions have to be
resolved. Also, because of the fixed length-scale distribution near the wall, these
models have been found to give better predictions for adverse pressure gradient
boundary layers than pure k—¢ models. A review on the work up to 1990 in this area
can be found in Ref. [5].

The objective of this paper is to test various two-layer models, which differ in the
near-wall one-equation model used, and also the Kato—Launder modification vis-a-
vis the standard k—¢ model using wall functions for the flow around a simple building,
The flow around a surface-mounted cube placed in a developed channel flow was
chosen because (1) it has a simple geometry but has all the important complex features
of real building flows as described briefly in Section 2 below, (ii) it was studied
experimentally in detail by Martinuzzi and Tropea (2] and (iii) the boundary and
inflow conditions are well defined. A further advantage is that LES results are
available for comparison [6].

2. Flow around a surface-mounted cube: the experimental study [2]

The geometry of the test case is sketched in Fig. 1. The height of the cube is half of
that of the channel. For Re = UyH/v = 40000 (Uy is the bulk velocity, H is the cube
height) Martinuzzi and Tropea [2] carried out flow visualization studies and detailed
LDA measurements from which the mean velocity components and the various
Reynolds stresses are available. The entry section of the channel was long enough to
have developed channel flow. The on-coming turbulence intensity at roof height is
relatively low (T, = V/F/UB ~ 0.03). From their flow visualization studies and the
detailed measurements, Martinuzzi and Tropea devised the flow picture given in
Fig. 2 which clearly shows the very complex nature of the flow in spite of the
simple geometry. The flow separates in front of the cube; on average there is a
primary separation vortex but also a secondary one, while instantaneously up to four
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Fig. 1. Geometry of the test case and boundary conditions.

Fig. 2. Schematic representation of the flow around a cube from Ref. [2].

separation vortices were detected. The main vortex wraps as a horse-shoe vortex
around the cube into the wake and has a typical converging-diverging behaviour. The
flow separates at the front corners of the cube on the roof and the side walls; on
average it does not reattach on the roof but there appears to be reattachment on the
side walls. A large separation region develops behind the cube which interacts with the
horse-shoe vortex. Originating from the ground plate, an arch vortex develops behind
the cube. Predominant fluctuation frequencies were detected sideways behind the
cube, which were traced to vortex shedding of the flow past the side walls. The
Strouhal number was found to be St = f/fHUy = 0.15. Further, bimodal behaviour of
the flow separation, and, in particular, of the vortices in front and on the roof was
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observed. Of course, such unsteady phenomena cannot be accounted for in the
steady-calculation procedure used in the present study, which may be responsible for
some of the discrepancies to be discussed below.

3. Standard £k— model and Kato—-Launder modification

The standard k—¢ model [7] employs the Boussinesq eddy-viscosity concept and
determines the isotropic eddy viscosity v, from

v, = C,k?/e. (1)

The distributions of k (turbulent kinetic energy) and ¢ (dissipation rate) appearing in
this relation are determined from the following model transport equations:

{Uik)’i = [(V + £>k'lil + Pk — &
Ok i

(Ul‘ﬁ),l‘ = [(V + E)Q,’} + ClPkE/II( — ngz/k, (2)

& N

P, = ?ujU,-,j represents the rate of production of turbulent kinetic energy resulting
from the interaction of turbulent stresses and mean velocity gradients. The model
employs the following standard values of the empirical constants: C, = 0.09; C; =
1.44; C, =192; g, = 1.0 and o, = 1.3. In the standard version of the model, wall
functions are used which relate the velocity parallel to the wall, as well as k and ¢ at the
first grid point to the friction velocity [7].

The isotropic eddy-viscosity concept used in the k—¢ model leads to an unrealisti-
cally high production of k in the stagnation regions occurring in impinging flows. This
is a consequence of the inability of these models to simulate correctly the difference
between normal stresses governing the production P, in such regions. Kato
and Launder [17] suggested as an ad hoc measure to replace the original produc-
tion term P, = C,S% by P, = C,eSQ, where S = k/e\/1/2(U,; + U;,) and Q =
k/f:\/l/’2(U,«‘j — U, ;) denote, respectively, the strain and vorticity invariants. In simple
shear flows the behaviour remains unchanged as Q@ ~ § while in stagnation regions
Q = 0 so that the spurious turbulence production is eliminated.

4. Two-layer turbulence models
4.1. Basic concept

The two-layer approach adopted here consists of resolving the viscosity-affected
regions close to walls with a one-equation model, while the outer core flow is resolved
with the standard k-¢ model described above. In the one-equation model, the
eddy viscosity is made proportional to a velocity scale and a length scale /. The
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distribution of I, is prescribed algebraically while the velocity scale is determined by
solving the k-equation (as in Eq. (2)). The dissipation rate ¢ appearing as a sink term in
the k-equation is related to k and a dissipation length scale I, which is also prescribed
algebraically. The different two-layer versions available in the literature differ in the
use of the velocity scale and the way /, and [, are prescribed. It should be mentioned
that in the fully turbulent region the length scales I, and [, vary linearly with distance
from the wall. However, in the viscous sublayer, [, and [/, deviate from the linear
distribution in order to account for the damping of the eddy viscosity and the limiting
behaviour of ¢ at the wall.

4.2. kY% velocity-scale-based model [5]: TLK

The approach combines the standard k—¢ model in the outer region with a one-
equation model due to Norris and Reynolds [8] in the viscous-sublayer employing

ve=Ck'"l; &=kl (3)

In this model, the length scale [, is damped in a similar way as the Prandtl mixing
length by the Van Driest function, so that it involves an exponential reduction
governed by the near-wall Reynolds number R, = Uy,/v. However, in contrast to the
original Van Driest function, R, uses k'’ as a velocity scale U instead of U, which can
go to zero for separated flows.

ly=Cuynf, with f,=1— exp(— Ry 23) (4)
A,A

The constant C, is set equal to xC, ** to conform with the logarithmic law of the wall.

The empirical constants appearing in the f,-function are assigned the values 4, = 50.5

and A" = 25. The reader is referred to Ref. [5] for a review and further details on the

choice of the constants. For the dissipation scale the following distribution is used

near the wall:

Clyn

l,=—-———— C(C,=132 5
T TECARG) ©)

The outer (k—¢) and the near-wall model are matched at a location where the damping
function f, reaches the value 0.95, i.e., where viscous effects become negligible.

The combination of the Kato—Launder correction with the TLK model is hereafter
labeled TLKK.

4.3. (vH)Y? velocity-scale-based model [9]: TLV

The development of this model was motivated by the fact that the length scale
functions as proposed in Ref. [8], particularly the I -function, are not in agreement
with direct numerical simulation (DNS) data, and that the normal fluctuations (v'?)"/?
are a more relevant velocity scale for the turbulent momentum transfer near the wall
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than k'/2. Therefore, the following model using (v'?)!/? as a velocity scale was proposed
in Ref. [9]:
v, =~/02 ¢ =02kl
Yy = v =N /E.V‘ (6)
with
L,,=033y, and [, = n/[l 0+2 12V [N yn:| (7
I

which is based on DNS data for fully developed-channel flow. As an equation for k is
solved, ¢’ needs to be related to k, which is done through the following DNS-based
empirical relation:

v2/k = 4.65 x 107 %(R,)> + 4.00 x 107*R,, R, = k'2y,/v, (8)

valid only very near the wall. The matching between the outer and near-wall model is
performed at a location where R, = 80.

5. Outline of the computational method

The computer code FAST-3D [10] used for the flow calculations is based on
a finite-volume approach for solving the incompressible Navier-Stokes equations.
Flows around complex geometries can also be treated since the code is written for
curvilinear body-fitted coordinates using Cartesian velocity components. A non-
staggered, cell-centred grid arrangement is used. Pressure field oscillations are avoid-
ed by means of the momentum interpolation technique due to Rhie and Chow [11].
The pressure—velocity coupling is achieved using the SIMPLE algorithm. The diffu-
sion fluxes are approximated by central differences, while the hybrid linear-parabolic
approximation, a second-order low-diffusive and oscillation-free scheme of Zhu [12],
is applied for the convection fluxes. The resulting system of difference equations is
solved using the strongly implicit solution procedure of Stone [13].

6. Grids and boundary conditions

The computational domain with the various boundaries is shown in Fig. 1. The
effect of the location of the inflow and outflow boundaries and of the lateral bound-
aries was studied and the boundaries were placed at the locations given in Fig, 2 to
avoid any influence on the calculations. Because of symmetry conditions, only half of
the width of the flow needed to be calculated. Calculations using various grids
indicated that with the standard k—¢ model using wall functions, grid-independent
results could be obtained with 110 x 32 x 32 grid points in the x-, y- and z-directions.
A finer mesh consisting of 142 x 84 x 64 grid points was applied in all two-layer
computations. The grids were non-uniform, being considerably finer in the near-wall
regions. The first cells adjacent to the walls were set with respect to the criteria
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required for the individual near-wall treatment. Hence, using wall functions the width
of the near-wall cell was 0.01H and using the two-layer approach 0.001H, which
corresponds to 10 < y™ < 25and 1 < y* < 5, respectively. In the two-layer case, the
number of grid points placed in the viscous sublayer was in most regions typically
15-20. The boundary conditions employed are also indicated in Fig. 1: On the ground
plate and the cube walls, either wall functions were employed or the no-slip condition
and k = 0 in the two-layer calculations, while at the upper boundary of the channel
wall functions were always used. In a separate calculation, fully developed channel
flow was calculated first and the results were then used as inflow conditions. At the
exit, zero gradient conditions were applied.

7. Results and discussions

Fig. 3 shows a comparison of streamlines in the plane of symmetry (left) and near
the channel floor (right), while Table 1 compares various parameters characterizing
the size and location of separation regions as defined in Fig. 2. The experimental
results are time-averaged over a long period, and in Table 1 results of an LES
calculation [6] are also included. From Fig. 3 it appears that the stagnation point is
well simulated by the various models (Y,/H = 0.76). The primary upstream separation
location X (labelled A in the experimental flow pattern) which is caused by the strong
pressure gradient imposed by the obstacle on the oncoming boundary layer is
predicted differently by the wall function (WF) and two-layer (TL) models. The WF
models predict the separation point (X) too close to the obstacle while the TL models
give good agreement with experiments, with the exception of the TLV model which
predicts somewhat early separation similar to the LES of Ref. [6]. The location of the
horse-shoe vortex centre in front of the cube is well captured by the various TL
models (at X &~ — 0.35) while the WF-based models predict the centre further up-
stream. Also, the TL models are able to reproduce the secondary vortex developing
right, in the corner in front of the obstacle (band labelled C) but the resolution of the
streamline picture is not good enough to display this. The observations for the adverse
pressure-gradient flow region in front of the obstacle allow the conclusion that here
the TL models are clearly superior to the ones using wall functions.

Looking now at the separation region on the roof, it can be observed that the k—¢
model with wall functions produces a much too small separation zone with unrealistic
reattachment on the roof. When the KL modification is switched on, the separation
region becomes much longer and in fact there is now no reattachment, but the
separation bubble is too thin compared with the experimentally observed one. This
improvement is brought about by the significant reduction of the turbulence kinetic
energy produced in front of the obstacle, as can be seen from the k-contours given in
Fig. 4. As a consequence, in the KL version there is less turbulence swept around the
front corner so that the eddy viscosity over the roof is smaller, leading to a longer
separation region. A similar effect is brought about by switching from WF to TL
models (without KL modification) which also produce a separation bubble without
reattachment which is, however, also too thin.
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Fig. 3. Streamlines in the symmetry plane (left) and in the channel floor (right).
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Table 1
Predicted flow structure parameters over the obstacle

Model Key Y, X X, Xy

Experiment Ref. [2] Exp 0.17 1.040 — 1.612
k—& + (WF) K-E —- 0.651 0432 2.182
k-¢ K-L + (WF) KL 0.062 0.640 — 2.730
Two-layer k—¢ TLK 0.098 0.950 — 2.680
Two-layer k--¢ TLV 0.102 1.215 — 2.685
Two-layer k—& TLKK 0.160 0.950 — 3.405
LES [6] LES-S 0.162 1.287 — 1.696
LES [6] LES-D 0.162 0.998 — 1.432

2.0 2.0 T

Fig. 4. k-isolines in the symmetry plane, left: KE; right: KL.

This improvement is due to the better resolution of the relatively thin bubble and
the more realistic treatment of the near-wall region and is fully in line with previous
observations made in 2D calculations (e.g. Ref. [4]). Combining the two-layer ap-
proach with the KL modification (TLKK) brings the predicted flow behaviour over
the roof closest to the experimental one, i.e., the bubble thickness is now fairly realistic
and clearly the separation region on the roof merges with that behind the obstacle.
However, the centre of the bubble is predicted somewhat too far downstream. The
Kato-Launder modification becomes, of course, more important the higher the
approach-flow turbulence is. A recent calculation performed for a similar flow but
with a higher turbulence intensity at roof height (T, = 0.16) has shown that using the
two-layer approach alone (TLK model) did not prevent unrealistic reattachment of
the flow on the roof [14].

From Fig. 3 and Table 1 it is clear that the extension of the separation region
behind the cube (X ) is overpredicted by all models. The standard k—e model with wall
functions gives the smallest value and is closest to the experiments; both the introduc-
tion of the KL modification and the two-layer approach increase further the length of
the separation region, and a combination of the two approaches (TLKK) gives the
most excessive length (X,/H = 3.4 compared with 1.62 in the experiments). As was
discussed above, the KL modification reduces the k-production in front of the cube so
that less turbulence is swept over the roof and also into the downstream region,
leading to lower eddy viscosity there. This explains the longer separation zone
vis-a-vis the standard k-¢ model calculations. Moving from WF calculations to TL



74 D. Lakehal, W. Rodi/J. Wind Eng. Ind. Aerodyn. 67& 68 (1997) 65-78

calculations, the resulting larger and also thicker separation zone on the roof of course
also increases the separation zone behind the cube, and the lengthening of the
separation region when introducing the TL approach is also consistent with a variety
of calculations of 2D separated flows. With these, however, the change is in the right
direction, whereas here already the basic model produces too long a separation
region. As sketched in Fig. 2, the flow field behind the cube is very complex with
complex strain fields and curvature effects; the still fairly simple eddy-viscosity k—¢
model may not be able to cope with these phenomena and a Reynolds-stress-equation
model may do a better job. However. a more serious deficiency of the calculation
methods used may be the fact that they are steady and ignore any vortex-shedding
effects. In the experiments, vortex shedding from the side walls was observed, and such
shedding can contribute greatly to the momentum exchange in the wake and can
thereby reduce significantly the length of the separation region behind obstacles. This
became very clear in previous calculations of the flow past a square cylinder [15]. Also
the fact that the LES calculations [6]. which resolve large-scale unsteady motions,
produce the correct separation length supports the notion that the omission of
unsteady effects may be the main cause for the overprediction of the separation length.

Fig. 3 compares also the calculated streamlines near the channel floor with the
experimental oil-flow picture. In comparison with the WF models, the two-layer
approaches reproduce much more detail of the flow structure near the wall due to the
finer resolution in this region. The figure shows that the horse-shoe vortex is generally
predicted quite well by the different approaches. The outer limit of the wake region
formed by the lateral arms of the horse-shoe vortex (line D in oil-flow picture) varies
however between the different calculation approaches. In the experiment, the width of
this wake decreases up to approximately the reattachment point X,; then it increases
again. This feature governed by the rate of rolling is well described by the two-layer
models while in contrast the WF model calculations do not produce the converging-
diverging behaviour. The two-layer approaches also seem to predict correctly the
corner vortices (N12) generated downstream of the vertical leading edges of the cube
at the channel/obstacle junction. The location of the simulated arch vortices behind
the obstacle (N14) shows clearly the differences between WF and TL results. In the k¢
WF calculations, basically the whole separation region is occupied by these vortices
which contradicts the experimental observation; in the TL calculations these vortices
are limited to a smaller area as in the experiments and as predicted similarly by the
LES method. Since the large-eddy simulation produces nearly the correct separation
length, it yields overall a flow pattern at the channel floor which is in very good
agreement with the observed one.

Fig. 5 displays calculated and measured U-velocity profiles at different streamwise
locations on the symmetry plane. All streamwise velocity profiles agree well with the
measurements at x/H = — 1.0 upstream of the cube. As was to be expected from the
streamlines in Fig. 3, significant differences between the k-¢ model results and the
other results can already be observed at a location at the middle of the roof
(x/H = 0.5). Here, and also at the position of the back face of the cube (x/H = 1.0), the
TL results are in better agreement with the experiments; the best results were obtained
with the TLKK model. The KL model performance is similar to that of TLK and
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Fig. 5. Comparison of mean velocity profiles U in the symmetry plane.

TLV models, as was to be expected from the streamline pictures. At x/H = 1.5, the
profiles predicted by the various models are rather similar and agree fairly well with
the experiments in the region above the roof height. Below this, the reverse-flow
velocity is underpredicted by all models. The further development of the U-profile is of
course influenced mainly by the fact that the models predict too large a separation
region so that the recovery is underpredicted by various degrees, of course worst by
the TLKK model. Here, the LES calculations show much better agreement with the
experiments,

Fig. 6 displays three vertical profiles of the shear stress u't" and turbulent kinetic
energy k in the symmetry plane. At x/H = 0.5, all models using the TL approach
predict fairly well the peak values of u'v" and k except for TLKK which is low, while
near the backward edge of the cube, these values are underpredicted by all models.
This trend continues further downstream; in the region close to the flow reattachment
point (x/H = 2 and 2.5) all models behave in a very similar way: the u'v'- and k-levels
are underpredicted when compared with the experiments. This could partly be due to
deficiencies of the eddy-viscosity concept but may again be largely caused by unsteady
effects as the LES calculations produce higher levels in significantly better agreement
with the measurements.
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Fig. 6. Comparison of u't'- and k-profiles in the symmetry plane.

8. Conclusions

Turbulent flow past a surface-mounted cubical obstacle placed in developed-
channel flow has been investigated with various versions of the k—¢ model, including
different two-layer approaches, wall function treatment and the Kato—Launder modi-
fication. Despite the simple geometry of the obstacle, the flow developing in its vicinity
is very complex with multiple, unsteady separation regions, vortices of various kinds,
strong curvature and adverse as well as favourable pressure gradients. The models
using wall functions cannot reproduce the details of the complex flow structure near
the ground, e.g., the converging-diverging behaviour of the horse-shoe vortex, and
also produce late separation of the boundary layer ahead of the obstacle. The
standard version of the k—¢ model further produces a much too small separation
region with unrealistic reattachment on the roof. The simulation of this region is
improved significantly by including the KL modification which eliminates the excess-
ive kinetic energy production in the stagnation region. Using the two-layer approach,
the details of the complex flow structure near the ground wall including the converg-
ing-diverging behaviour of the horse-shoe vortex can be resolved much better, the
separation location in front of the cube is predicted correctly and also the prediction
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of the separation region on the roof is improved — when combined with the KL
modification the size of the roof separation bubble is predicted fairly well. The price
for these improved predictions is, however, quite high since the computing time
necessary was a factor of 25 larger than when wall functions were used. The calcu-
lations have shown also that, except for the adverse pressure gradient region in front
of the obstacle, there is little difference in the results obtained with the TLK and TLV
versions of the two-layer model. This indicates that, for the type of flow considered,
the calculations are not sensitive to the details of the near-wall one-equation model.
This conclusion is supported further by an additional calculation which has been
performed using the TL model of Chen and Patel [16] which produced virtually the
same results as the TLK model.

All models were found to overpredict the length of the separation region behind the
cube, and introducing the Kato—Launder modification and the two-layer approach,
which improve the predictions in the front part, both have an adverse effect on the
separation length. It would be intriguing to see how Reynolds-stress-equation models
perform, but it is likely that the unsteady effects such as the observed vortex shedding
from the side walls significantly contribute to the momentum exchange and that the
neglect of such effects in the steady calculations has led to the overprediction of the
separation length. This notion is supported by the LES results [6] which produced
good agreement with the experiments in every respect including the separation length.
However, a very high price has to be paid for this as the LES calculations took 160
CPU hours on a SNI $600/20 vector computer while the two-layer model calculations
took 6h and the calculations using wall functions only 15 min.
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